Phytoseiulus persimilis    (Athias-Henriot, 1957)

 Alóctono (Chile) CLASIFICACIÓN CIENTÍFICA

Dravý roztoč Phytoseiulus persimilis

Reino   Animalia
Filo
 
Arthropoda
Subfilo
 
 Cheliceromorpha Boudreaux, 1978
Infrafilo
 
 Cheliceriformes
Superclase
 
 Chelicerata Heymons, 1901
Epiclase
 
  Euchelicerata
Clase
 
 Arachnida Lamarck, 1801
Subclase
 
 Acari Micrura Hansen & Sorensen, 1904
Infraclase
   Acaromorpha Dubinin, 1957
Superorden
 
 Parasitiformes Reuter, 1909
Orden
 
 Mesostigmata
Suborden
 
 Dermanyssina
Superfamilia
 
 Ascoidea Oudemans, 1905
 
Familia
 
 Phytoseiidae Berlese, 1916

Info

Fuente: Consejería  Agricultura y pesca Junta Andalucía

Introducción

Phytoseiulus persimilis es el fitoseido más conocido y empleado en el control de tetraníquidos de numerosos cultivos, fundamentalmente de invernadero. Es originario de la zona subtropical de América del Sur y está bien adaptado y ampliamente distribuido en la zona mediterránea, sin embargo, ha sido introducido en tantos países que puede decirse que su distribución actual es cosmopolita.

En España es muy frecuente, y abundante en las hierbas espontáneas, las cuales constituyen su hábitat natural. Aparece de forma espontánea en la Costa mediterránea, Andalucía y las Islas Canarias. Sin embargo, el uso de P.persimilis para controlar la araña roja en cultivos protegidos en España, ha dado resultados muy variables. Entre las causas posibles de tal éxito, se encuentra el hecho de que a pesar de ser una especie autóctona es poco abundante, además de mostrar una escasa tolerancia a temperaturas elevadas, siendo frecuentemente desplazado y sustituido por otro fitoseido autóctono, Neoseiulus californicus (McGregor).

Morfología

Los huevos son ovalados, y de doble tamaño que los de araña roja. Recién puestos son rosados y transparentes, oscureciéndose posteriormente.

Las larvas y ninfas son de color rojo pálido a claro.

El adulto de P. persimilis, es muy característico por su gran tamaño y movilidad. Presenta un cuerpo en forma de pera, de color rojo brillante y con largas patas, resultando fácilmente distinguible a simple vista.

Biología y Ecología

Los estados que constituyen el ciclo biológico de P. persimilis s son huevo, larva, 2 estadíos ninfales (protoninfa y deutoninfa), y adulto.

Los estudios a los que ha sido sometido, han demostrado que P. persimilis presenta una velocidad de desarrollo muy rápida, superior a la de su presa en condiciones normales, y su fecundidad y capacidad de consumo de presas es la más alta de las encontradas en fitoseidos.

La duración del ciclo biológico de P. persimilis depende, entre otros factores, de la temperatura. A 20ºC, los huevos eclosionan en unos 3 días, y completan su desarrollo en 10 días, mientras que su presa Tetranychus urticae necesita 17 días a la misma temperatura. A 30ºC, el tiempo de desarrollo total de P.persimilis se reduce a 5 días, y el de la araña roja a más de 7 días. Las hembras pueden poner hasta 50-60 huevos durante toda su vida.

Otro de los factores esenciales que favorece ó limita la dinámica poblacional de P.persimilis, es la humedad relativa. Este parámetro incide directamente sobre la fecundidad y la longevidad de las hembras, la posibilidad de desarrollo de los huevos y de los estados inmaduros. El estado de huevo es el más sensible a baja humedad.

Una humedad baja, por debajo del 60%, tiene un efecto negativo sobre la duración del desarrollo y la eclosión de los huevos.

Este ácaro fitoseido mantiene un control efectivo con temperaturas entre 15 y 25 ºC en intervalos de 60-90% de humedad relativa. Por encima de 30ºC, su actividad decrece.

Los huevos de P.persimilis son depositados cerca de una fuente de alimento, una colonia de tetraníquidos, de los cuales emergen las larvas que permanecen inactivas, sin capacidad de predación. Cuando evolucionan a protoninfa y posteriormente a deutoninfa, empiezan a buscar presas en la superficie de la hoja, para alimentarse. Finalmente se desarrolla el adulto, que presenta una gran actividad depredadora.

Cuando el ácaro depredador, adulto y ninfa, encuentra la presa succiona el contenido fluido de su cuerpo. Los tetraníquidos depredados adquieren color marrón o negro, pudiendo ser identificadas como pequeñas manchas en las hojas., fácilmente diferenciables de los tetraníquidos vivos, de color marrón claro a rojo oscuro.

Durante los estadíos proto y deutoninfa, P. persimilis depreda huevos y estados inmaduros. Los ácaros adultos devoran todos los estadíos de la araña roja.

P.persimilis es un depredador exclusivo del género Tetranychus, no alimentándose de otros artrópodos, ni de polen, por lo que es necesario la presencia de arañas rojas para su establecimiento en el cultivo. Si hay escasez de presas puede llegar al canibalismo.

Presenta una excelente movilidad, incluso cuando existen telas de araña en el cultivo, aunque las pilosidades de las hojas, o los tejidos rugosos disminuyen su capacidad de desplazamiento.

Si las plantas infestadas por araña roja están muy juntas, el depredador puede desplazarse fácilmente de una planta a otra, dispersándose más rápido que la araña roja. Si la densidad de presa es baja los adultos se dispersan en busca de nuevas fuentes de alimento, mientras que permanecen las ninfas en el mismo lugar. El daño producido por la araña roja y sus "telas" ayudan al depredador a encontrar a sus presas.

En los cultivos hortícolas protegidos de Almería han sido identificadas las especies de araña roja Tetranychus urticae Koch, T.turkestani Ugarov & Nicolski, T.ludeni (Zacher) y T.evansi Baker & Pritchard. Esta última se ha introducido en los cultivos españoles en los últimos años, siendo muy escasos los datos que se tienen de la importancia y el impacto que puede ocasionar en nuestros cultivos. Seguramente su actividad en los ambientes agrícolas está pasando en parte desapercibida, al ser confundida con otras especies similares (Ferragut y Escudero., 2002). En este mismo estudio se observó además, la incapacidad de P.persimilis para desarrollarse de forma adecuada cuando se alimentan de T.evansi.

Por consiguiente, dado que distintas especies del género tetranychus pueden convivir en una misma planta y/o cultivo, es recomendable llevar a cabo una primera identificación de las especies presentes y su distribución, previa a la estrategia de control a seguir para poder garantizar un control efectivo.

Productos comerciales

     Comprar Phytoseiulus persimilis

Productos comerciales

Phytoseiulus persimilis está registrado en España bajo las siguientes marcas comerciales:

  nombre comercial Comercialización Presentación contenido unitario
  PHYTOCONTROL Agrobio S.L.  Bote  2.000 individuos
  PHYTOSEIULUS VIP Saniveg S.L.   Bote 25000 individuos
  SPIDEX Koppert Biological Systems S.L. botella de 100 ml (adultos en serrín)  Botes de 2000 y 10.000 individuos

 

Manejo

Liberación de Phytoseiulus persimilis y otros enemigos naturales en cultivos protegidos
 

 

 

Plagas que controla
 Araña roja (Tetranichus sp.)     

Cultivos recomendados
 Hortícolas      
 Frutales      
 Ornamentales      

 Dosis recomendadas
 2-6 ácaros / m2. En los focos aumentar hasta 20 Indiv/m2 

Publicaciones

Autor: A. ESCUDERO Y F. FERRAGUT
Bol. San. Veg. Plagas, 22: 115-124, 1996

RESUMEN

En este trabajo se analizan algunas de las causas de la escasa eficacia de Phytoseiulus persimilis en el control de la araña roja en España. Para ello se ha estudiado en el laboratorio la influencia de [...]

Autor: M. MIÑARRO, E. DAPENA, F. FERRAGUT
Bol. San. Veg. Plagas, 28: 287-297, 2002

RESUMEN

Se han muestreado los fítoseidos presentes en manzano en Asturias (1) a lo largo del periodo vegetativo (1999) y (2) sobre colonias otoñales de ácaros del género Tetranychus (1998 y 2000). Se han identificado un total de 492 individuos pertenecientes a 12 especies diferentes. Todas las especies, excepto Amblyseius herbicolus (Chant) y Phytoseiulus persimilis Athias-Henriot, han sido [...]

Autor: L. A. ESCUDERO, J. ROSELLÓ, E. ALEIXANDRE, S. BRAMARDI y F. FERRAGUT
Bol. San. Veg. Plagas, 25: 143-155, 1999

RESUMEN

En este trabajo se analiza la colonización de un cultivo de judía por las arañas rojas y los fitoseidos y los factores que intervienen en el proceso dispersivo de estos ácaros. La araña roja llega en una etapa temprana del cultivo, arrastrada por los vientos dominantes en la zona y se desplaza con rapidez una vez que se ha instalado en el cultivo. Los fitoseidos llegan más tarde [...]

Autor: Hilarión, Alejandra; Niño, Angie; Cantor, Fernando; Rodríguez, Daniel; Cure, José Ricardo
Agronomía Colombiana, vol. 26, núm. 1, 2008, pp. 68-77

RESUMEN

Phytoseiulus persimilis ha sido utilizado en programas de manejo integrado de plagas como alternativa al uso de acaricidas para el manejo de Tetranychus urticae. Los danos ocasionados por T. urticae generan [...]

 OTRAS PUBLICACIONES

Autor: Schütte C, Kleijn PW, Dicke M.
Laboratory of Entomology, Wageningen University, P O Box 8031, 6700, EH, Wageningen, The Netherlands
Exp Appl Acarol 38:275-97. 2006

Abstract

Adult female Phytoseiulus persimilis Athias-Henriot (Acari, Phytoseiidae) of one of our laboratory populations showed a lower degree of attraction to herbivore-induced plant volatiles than other laboratory populations. We hypothesized earlier that this consistent change in foraging behavior is a symptom of a disease, as it is a contagious phenomenon. Here we describe more symptoms by comparing mated females of this population (non-responding (NR) population) with mated females of other populations that are strongly attracted to herbivore-induced plant volatiles (responding populations). The most apparent characteristic of the NR population was the presence of numerous dorso-ventrally flattened females (76% of all females). These females had a normal size after mating but shrank during adulthood. Independent of their age, shrunken females did not reproduce and died a few days after shrinking. In addition to these profound differences in short term performance, females from the NR-population showed behavioral changes, including a lower degree of attraction to herbivore-induced plant volatiles, a higher tendency to leave a prey-patch and a lower predation rate. Moreover, about half of the live females of the NR-population carried birefringent dumbbell-shaped crystals in the legs whereas live females of a responding population carried crystals only in the lumen of the Malpighian tubules and the rectum. The symptom 'crystals in the legs' was correlated with low reproduction. Energy dispersive X-ray diffraction of these crystals revealed that they contain calcium and phosphorus along with carbon and oxygen. Crystals with comparable elemental compositions and the same characteristic concentric layering are well known in insects, where they are thought to play a major role in detoxification of calcium and heavy metals, and in storage of phosphorus. The fraction of predators carrying a white spot in the distal part of the opisthosoma, due to accumulation of excretory material in the rectum, was the same in both populations. Present results are discussed in the context of mite pathology and biological control.

Autor: Bjøornson S, Keddie BA.
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
J Invertebr Pathol 76:293-300. 2000

Abstract

Two undescribed species of microsporidia were found in mass-reared Phytoseiulus persimilis Athias-Henriot from two commercial sources during a routine examination of these predators for pathogens. Both microsporidian species were described from specimens that had been prepared for transmission electron microscopy; live specimens were unavailable for examination. One microsporidium, identified as Species A, was described from two specimens obtained from a commercial insectary in North America. All observed stages of this microsporidium were uninucleate. Rounded-to-ovoid schizonts appeared to develop in direct contact with the cytoplasm of lyrate organ cells (ovarian tissue). Mature spores of Species A were elongate-ovoid and measured 2.88 x 1.21 microm. A polar filament coiled 7 to 10 times in the posterior half of the spore. Sporoblasts and spores were observed in the cytoplasm of cells of numerous tissues and in developing eggs within gravid females. A second species, identified as Species B, was described from five specimens obtained from a commercial source in Israel. All observed stages of this microsporidium were uninucleate. Schizonts of Species B were observed within the cytoplasm of cecal wall cells and within the nuclei of lyrate organ cells. Mature spores were ovoid and measured 2.65 x 1.21 microm. A polar filament coiled 3 to 4 times in the posterior half of the spore. Densely packed ribosomes often concealed the polar filament and other internal spore characteristics. Spores were observed in the cytoplasm of cells of numerous tissues and occasionally within the nuclei of lyrate organ cells. Numerous spores and presporal stages were observed within the ovary and developing eggs. The development and pathology of Species A and B were compared to those of Microsporidium phytoseiuli Bjøornson, Steiner and Keddie, a microsporidium previously described from P. persimilis obtained from a commercial source in Europe. The occurrence of three species of microsporidia within P. persimilis from three sources raises questions regarding the origin of these pathogens. Because microsporidia may have profound impact on the performance of P. persimilis, consideration must be given to the identification and exclusion of microsporidia from field-collected specimens or from predators that may be shared among commercial sources.

Author:  Nicetic, Watson DM, Beattie GA, Meats A, Zheng J.
Centre for Horticulture and Plant Sciences, University of Western Sydney Hawkesbury, Penrith South DC, NSW, Australia
Exp Appl Acarol 25:37-53. 2001

Abstract

From 1995 to 1999, four experiments were conducted on greenhouse roses to assess the effectiveness of the nC24 petroleum spray oil (PSO), D-C-Tron Plus, against two-spotted mite, Tetranychus urticae Koch (Acarina: Tetranychidae), and to determine how the oil could be most efficiently and effectively used in combination with the predatory mite Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) in an integrated pest management program. The results showed that 0.5% PSO applied fortnightly to roses gave excellent protection from T urticae infestation when the mite population was not already established. However, PSO applied after roses were infested with T. urticae above the economic threshold only stabilised populations without reducing them below that threshold. Populations of P. persimilis in the upper and lower canopies were unchanged after two sprays of PSO at 7-day intervals, and application of PSO to the upper canopy was as effective in controlling T. urticae in the presence of P persimilis as spraying the entire plant. Combining PSO with P. persimilis gave better control of T. urticae than using P. persimilis alone. The most cost-effective use of PSO in the presence of P. persimilis is, therefore, to apply spray only to the upper canopy. This will not affect control of powdery mildew with PSO. Comparison of a control program for T urticae based on the monitored use of synthetic miticides with that based on calendar application of PSO revealed that both gave equally effective control. The benefits of combining PSO and P. persimilis in an integrated pest management program for T. urticae on roses over a program based on synthetic fungicides are discussed.

Autor: Bostanian NJ, Akalach M.
Horticultural Research and Development Centre, Agriculture and Agri Food Canada, 430 Blvd Gouin, St Jean sur Richelieu, Quebec, J3B 3E6, Canada
Pest Manag Sci 62:334-9. 2006

Abstract

A laboratory study assessed the contact toxicity of indoxacarb, abamectin, endosulfan, insecticidal soap, S-kinoprene and dimethoate to Amblyseius fallacis (Garman), Phytoseiulus persimilis Athias-Henriot and nymphs of Orius insidiosus (Say). Amblyseius fallacis is a predacious phytoseiid mite and an integral part of integrated pest management (IPM) programmes in North American apple orchards. The other two beneficials are widely used in greenhouses to manage various arthropod pests infesting vegetable and ornamental crops. Indoxacarb is a slow-acting insecticide, so toxicity data were recorded 7 days post-treatment when the data had stabilised. It showed no toxicity to O. insidiosus nymphs or to A. fallacis or P. persimilis adults. The LC50 values for O. insidiosus nymphs and P. persimilis could not be estimated with their associated confidence limits, because the g values were greater than 0.5 and under such circumstances the lethal concentration would lie outside the limits. The LC50 for A. fallacis was 7.6x the label rate. The fecundity of P. persimilis was reduced by 26.7%. The eclosion of treated eggs from both species of beneficial mites was not affected adversely. Among the other pest control products, S-kinoprene and endosulfan affected adversely at least one species of the predators, whereas dimethoate, abamectin and insecticidal soap were very toxic to all three beneficials. Indoxacarb should be evaluated as a pest control product in IPM programmes.

Autor: Mumm R, Posthumus MA, Dicke M.
Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands
Plant Cell Environ 31:575-85. 2008

Abstract

Many plants respond to herbivory by arthropods with an induced emission of volatiles such as green leaf volatiles and terpenoids. These herbivore-induced plant volatiles (HIPVs) can attract carnivores, for example, predators and parasitoids. We investigated the significance of terpenoids in attracting herbivores and carnivores in two tritrophic systems where we manipulated the terpenoid emission by treating the plants with fosmidomycin, which inhibits one of the terpenoid biosynthetic pathways and consequently terpenoid emission. In the 'lima bean' system, volatiles from spider-mite-infested fosmidomycin-treated plants were less attractive to the predatory mite Phytoseiulus persimilis than from infested control plants. In the 'cabbage' system, fosmidomycin treatment did not alter the attractiveness of Brussels sprouts to two Pieris butterflies for oviposition. The parasitoid Cotesia glomerata did not discriminate between the volatiles of fosmidomycin-treated and water-treated caterpillar-infested cabbage. Both P. persimilis and C. glomerata preferred volatiles from infested plants to uninfested ones when both were treated with fosmidomycin. Chemical analysis showed that terpenoid emission was inhibited more strongly in infested lima bean plants than in Brussels sprouts plants after fosmidomycin treatment. This study shows an important role of terpenoids in the indirect defence of lima bean, which is discussed relative to the role of other HIPVs.

Autor: Bustos A, Cantor F, Cure JR, Rodríguez D.
Facultad de Ciencias, Univ Militar Nueva Granada, Bogota, Colombia
Neotrop Entomol 38:653-9. 2009

Abstract

A rearing technique was standardized to produce Tetranychus urticae Koch on Phaseolus vulgaris (ICA Cerinza variety) as a prey of the predatory mite Phytoseiulus persimilis Athias-Henriot. Two assays were conducted to assess the following variables: 1. the most suitable plant age for mite infestation, 2. the best time to harvest the mites and reinfest the plants. In the first experiment, four-, five-, six-, and seven-week-old plants of P. vulgaris were infested with six T. urticae per foliole. The lower plant stratum exhibited the largest number of mites regardless of plant age. However, four-week-old plants had the larger average number of individuals. In the second experiment four-week-old plants were infested with 0.5 female mite/cm(2) of leaf. The number of individuals per instar of T. urticae was recorded weekly. The highest mite production occurred between four and five weeks after infestation, indicating this to be the most suitable for mite harvesting and for plant reinfestation.

Autor:  Ochiai N, Mizuno M, Mimori N, Miyake T, Dekeyser M, Canlas LJ, Takeda M.
Graduate School of Science and Technology, Kobe University, Nada, Kobe, Japan
Exp Appl Acarol 43:181-97. 2007

Abstract

Bifenazate is a novel carbazate acaricide discovered by Uniroyal Chemical (now Chemtura Corporation) for the control of phytophagous mites infesting agricultural and ornamental crops. Its acaricidal activity and that of its principal active metabolite, diazene, were characterized. Bifenazate and diazene had high toxicity and specificity both orally and topically to all life stages of Tetranychus urticae and Panonychus citri. Acute poisoning was observed with no temperature dependency. No cross-resistance was found to mites resistant to several other classes of acaricides, such as tebufenpyrad, etoxazole, fenbutatin oxide and dicofol. Bifenazate remained effective for a long time with only about a 10% loss of efficacy on T. urticae after 1 month of application in the field. All stages of development of the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, survived treatment by both bifenazate and diazene. When adult females of the two predatory mite species were treated with either bifenazate or diazene, they showed a normal level of fecundity and predatory activity in the laboratory, effectively suppressing spider mite population growth. Even when the predators were fed spider mite eggs that had been treated previously with bifenazate, they survived. These findings indicate that bifenazate is a very useful acaricide giving high efficacy, long-lasting activity and excellent selectivity for spider mites. It is, therefore, concluded that bifenazate is an ideal compound for controlling these pest mites.

Autor: Enigl M, Zchori-Fein E, Schausberger P.
Department of Applied Plant Sciences and Plant Biotechnology Institute of Plant Protection, University of Natural Resources and Applied Life Sciences, Peter Jordanstrasse 82, A 1190 Vienna, Austria
Exp Appl Acarol 36:249-62. 2005

Abstract

The cytoplasmically inherited bacterium Wolbachia is widespread in arthropod species and has been repeatedly detected in the predaceous mite Phytoseiulus persimilis. Our original goal was to assess the prevalence of Wolbachia infection in P. persimilis and the potential fitness consequences for this host. To accomplish that goal, seven P. persimilis strains were obtained from Europe, Africa and the USA and reared on the phytophagous mite Tetranychus urticae as prey. After preliminary results showed that the T. urticae used was infected with Wolbachia, the minimum starvation time of the predators to prevent false positive results from undigested prey was determined. We tested DNA samples by PCR (polymerase chain reaction) after starving the predators or feeding them Wolbachia-free T. urticae for various periods. Those experiments showed that Wolbachia could not be detected after 16 h at 25 degrees C and 48 h at 20 degrees C. To verify the results of the PCR analyses, we furthermore conducted crossing experiments with antibiotic-treated and untreated individuals. No indications of Wolbachia effects were recorded. Additionally, we screened live eggs of four of the seven strains reared in our laboratory and alcohol samples of 10 other P. persimilis strains for the occurrence of Wolbachia by PCR, none of which tested positive. Synthesis of our study and previous reports suggests that infection of P. persimilis with Wolbachia is extremely rare and of minor importance. We discuss the significance of our findings for future studies on the presence of Wolbachia in predaceous arthropods.

Autor: Conny Schütte
Laboratory of Entomology, Wageningen University, P O Box 8031, 6700 EH Wageningen, The Netherlands
J Invertebr Pathol 98:127-35. 2008

Abstract

Adult female Phytoseiulus persimilis Athias-Henriot (Acari, Phytoseiidae) of a laboratory population show a set of characteristic symptoms, designated as non-responding (NR) syndrome. Mature predators shrink, cease oviposition and die. They show a lower degree of attraction to herbivore-induced plant volatiles and a greater tendency to leave prey patches carrying ample prey. Moreover, predators may carry excretory crystals in the legs, may cease prey consumption and have a low excretion rate. Here, we satisfy Koch's postulates for a strain of Acaricomes phytoseiuli (DSM 14247) that was isolated from symptomatic female P. persimilis of the NR-population. Adult female P. persimilis were either exposed to a bacterial inoculum suspension (treatment) or to sterile distilled water (control) for a period of 3 days. Control and treated predators were examined for the occurrence of six symptoms characteristic for the NR-syndrome and the presence of A. phytoseiuli after inoculation. The latter was done by re-isolation of A. phytoseiuli from individual predators and predator feces placed on nutrient agar, by PCR-based identification and by histopathological studies of individual predators. The NR-syndrome was clearly induced in those predators that had been exposed to the bacterial inoculum (incubation time=2-5 days, fraction shrunken females=80%), whereas predators exposed to water did not show the NR-syndrome. A. phytoseiuli was never isolated from control predators whereas it could be re-isolated from 60% of the treated predators (N=37) and from feces of 41% of treated predators (N=17). Only one day after exposure A. phytoseiuli could not be re-isolated from treated predators and their feces. Light and electron microscope studies of predators exposed to A. phytoseiuli revealed striking bacterial accumulations in the lumen of the alimentary tract together with extreme degeneration of its epithelium. In addition, bacterial foci also occurred in the fat body. These phenomena were not observed in control predators that were exposed to sterile water. The present data prove that A. phytoseiuli can infect the predatory mite P. persimilis and induce the NR-syndrome and characteristic histopathological changes in adult female P. persimilis. This is the first record of a bacterial pathogen in a phytoseiid mite and the first description of pathogenic effects of a bacterial species in the genus Acaricomes.

Autor: A Walzer
Department of Applied Plant Sciences and Plant Biotechnology, Institute of Plant Protection, University of Natural Resources and Applied Sciences, Peter Jordanstrasse 82, A 1190 Vienna, Austria
Bull Entomol Res 94:577-84. 2004

Abstract

In greenhouse agroecosystems, a guild of spider mite predators may consist of the oligophagous predatory mite Phytoseiulus persimilis Athias-Henriot, the polyphagous predatory mite Neoseiulus californicus McGregor (both Acari: Phytoseiidae) and the primarily herbivorous but facultatively predatory western flower thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Diet-specialization and the predator body size relative to prey are crucial factors in predation on F. occidentalis by P. persimilis and N. californicus. Here, it was tested whether the relevance of these factors changes during predator ontogeny. First, the predator (protonymphs and adult females of P. persimilis and N. californicus): prey (F. occidentalis first instars) body size ratios were measured. Second, the aggressiveness of P. persimilis and N. californicus towards F. occidentalis was assessed. Third, survival, development and oviposition of P. persimilis and N. californicus with F. occidentalis prey was determined. The body size ranking was P. persimilis females > N. californicus females > P. persimilis protonymphs > N. californicus protonymphs. Neoseiulus californicus females were the most aggressive predators, followed by highly aggressive N. californicus protonymphs and moderately aggressive P. persimilis protonymphs. Phytoseiulus persimilis females did not attack thrips. Frankliniella occidentalis larvae are an alternative prey for juvenile N. californicus and P. persimilis, enabling them to reach adulthood. Females of N. californicus but not P. persimilis sustained egg production with thrips prey. Within the guild studied here, N. californicus females are the most harmful predators for F. occidentalis larvae, followed by N. californicus and P. persimilis juveniles. Phytoseiulus persimilis females are harmless to F. occidentalis.


 

 REFERENCIAS PUBMED
Social familiarity modulates group living and foraging behaviour of juvenile predatory mites.
Strodl MA, Schausberger P.Naturwissenschaften. 2012 Apr;99(4):303-11. Epub 2012 Mar 15.
 
Isolation and characterization of polymorphic microsatellite markers in Tetranychus urticae and cross amplification in other Tetranychidae and Phytoseiidae species of economic importance.
Sabater-Muñoz B, Pascual-Ruiz S, Gómez-Martínez MA, Jacas JA, Hurtado MA.Exp Appl Acarol. 2012 Feb 16. [Epub ahead of print]
 
Laboratory screening of potential predators of the poultry red mite (Dermanyssus gallinae) and assessment of Hypoaspis miles performance under varying biotic and abiotic conditions.
Ali W, George DR, Shiel RS, Sparagano OA, Guy JH.Vet Parasitol. 2012 Jan 14. [Epub ahead of print]
 
The effect of genetically enriched (E)-β-ocimene and the role of floral scent in the attraction of the predatory mite Phytoseiulus persimilis to spider mite-induced volatile blends of torenia.
Shimoda T, Nishihara M, Ozawa R, Takabayashi J, Arimura G.New Phytol. 2012 Mar;193(4):1009-21. doi: 10.1111/j.1469-8137.2011.04018.x. Epub 2012 Jan 13.
 
Nonlinear functional response parameter estimation in a stochastic predator-prey model.
Gilioli G, Pasquali S, Ruggeri F.Math Biosci Eng. 2012 Jan 1;9(1):75-96. doi: 10.3934/mbe.2012.9.75.
 
Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress.
Walzer A, Schausberger P.Biol J Linn Soc Lond. 2011 Mar;102(3):650-660.
 
Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae).
Gontijo LM, Nechols JR, Margolies DC, Cloyd RA.Exp Appl Acarol. 2012 Jan;56(1):23-32. Epub 2011 Oct 9.
 
Complex odor from plants under attack: herbivore's enemies react to the whole, not its parts.
van Wijk M, de Bruijn PJ, Sabelis MW.PLoS One. 2011;6(7):e21742. Epub 2011 Jul 13.
 
Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants.
Beizhou S, Jie Z, Jinghui H, Hongying W, Yun K, Yuncong Y.Pest Manag Sci. 2011 Apr 7. doi: 10.1002/ps.2156. [Epub ahead of print]
 
Sublethal effects of fenpyroximate and pyridaben on two predatory mite species, Neoseiulus womersleyi and Phytoseiulus persimilis (Acari, Phytoseiidae).
Park JJ, Kim M, Lee JH, Shin KI, Lee SE, Kim JG, Cho K.Exp Appl Acarol. 2011 Jul;54(3):243-59. Epub 2011 Feb 27.
 
Innate responses of the predatory mite Phytoseiulus persimilis to a herbivore-induced plant volatile.
Sznajder B, Sabelis MW, Egas M.Exp Appl Acarol. 2011 Jun;54(2):125-38. Epub 2011 Feb 15.
 
Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites.
Walzer A, Schausberger P.Anim Behav. 2011 Jan;81(1):177-184.
 
Toxicity of thiamethoxam to Tetranychus urticae Koch and Phytoseiulus persimilis Athias-Henriot (Acari Tetranychidae, Phytoseiidae) through different routes of exposure.
Pozzebon A, Duso C, Tirello P, Ortiz PB.Pest Manag Sci. 2011 Mar;67(3):352-9. doi: 10.1002/ps.2072.
 
Variation in herbivory-induced volatiles among cucumber (Cucumis sativus L.) varieties has consequences for the attraction of carnivorous natural enemies.
Kappers IF, Hoogerbrugge H, Bouwmeester HJ, Dicke M.J Chem Ecol. 2011 Feb;37(2):150-60. Epub 2011 Jan 20. Free PMC Article
 
Daugherty MP.Exp Appl Acarol. 2011 Apr;53(4):311-22. Epub 2010 Nov 5.Free PMC Article
 
Mycorrhiza-induced trophic cascade enhances fitness and population growth of an acarine predator.
Hoffmann D, Vierheilig H, Schausberger P.Oecologia. 2011 May;166(1):141-9. Epub 2010 Nov 4.
 
Tri-trophic level impact of host plant linamarin and lotaustralin on Tetranychus urticae and its predator Phytoseiulus persimilis.
Rojas MG, Morales-Ramos JA.J Chem Ecol. 2010 Dec;36(12):1354-62. Epub 2010 Oct 16.
 
New approach for the study of mite reproduction: The first transcriptome analysis of a mite, Phytoseiulus persimilis (Acari: Phytoseiidae).
Cabrera AR, Donohue KV, Khalil SM, Scholl E, Opperman C, Sonenshine DE, Roe RM.J Insect Physiol. 2011 Jan;57(1):52-61. Epub 2010 Oct 8.
 
The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects.
van Wijk M, de Bruijn PJ, Sabelis MW.J Chem Ecol. 2010 Nov;36(11):1211-25. Epub 2010 Sep 25.Free PMC Article
 
Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome.
Dermauw W, Vanholme B, Tirry L, Van Leeuwen T.Genome. 2010 Apr;53(4):285-301.
 
Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour.
Sznajder B, Sabelis MW, Egas M.J Chem Ecol. 2010 Jul;36(7):680-8. Epub 2010 Jun 25.Free PMC Article
 
Morphological and molecular diagnostics of Phytoseiulus persimilis and Phytoseiulus macropilis (Acari: Phytoseiidae).
Okassa M, Tixier MS, Kreiter S.Exp Appl Acarol. 2010 Nov;52(3):291-303. Epub 2010 May 16.
 
Predator avoidance by phytophagous mites is affected by the presence of herbivores in a neighboring patch.
Choh Y, Takabayashi J.J Chem Ecol. 2010 Jun;36(6):614-9. Epub 2010 May 14.
 
Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis.
Kappers IF, Verstappen FW, Luckerhoff LL, Bouwmeester HJ, Dicke M.J Chem Ecol. 2010 May;36(5):500-12. Epub 2010 Apr 13.Free PMC Article
 
Polyamines and jasmonic acid induce plasma membrane potential variations in Lima bean.
Ozawa R, Bertea CM, Foti M, Narayana R, Arimura G, Muroi A, Maffei ME, Takabayashi J.Plant Signal Behav. 2010 Mar;5(3):308-10. Epub 2010 Mar 4.Free PMC Article
 
Methyl salicylate production in tomato affects biotic interactions.
Ament K, Krasikov V, Allmann S, Rep M, Takken FL, Schuurink RC.Plant J. 2010 Apr 1;62(1):124-34. Epub 2010 Jan 6.
 
Zhang PJ, Zheng SJ, van Loon JJ, Boland W, David A, Mumm R, Dicke M.Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21202-7. Epub 2009 Nov 24.Free PMC Article
 
[Standardization of a rearing procedure of Tetranychus urticae Koch (Acari: Tetranychidae) on bean (Phaseolus vulgaris): plant age and harvest time].
Bustos A, Cantor F, Cure JR, Rodríguez D.Neotrop Entomol. 2009 Sep-Oct;38(5):653-9. Portuguese. Free Article
 
Reducing fertilization for cut roses: effect on crop productivity and twospotted spider mite abundance, distribution, and management.
Chow A, Chau A, Heinz KM.J Econ Entomol. 2009 Oct;102(5):1896-907.
 
Exogenous polyamines elicit herbivore-induced volatiles in lima bean leaves: involvement of calcium, H2O2 and Jasmonic acid.
Ozawa R, Bertea CM, Foti M, Narayana R, Arimura G, Muroi A, Horiuchi J, Nishioka T, Maffei ME, Takabayashi J.Plant Cell Physiol. 2009 Dec;50(12):2183-99. Epub .
 
Efficacy of Neoseiulus californicus and Phytoseiulus persimilis in suppression of Tetranychus urticae in young clementine plants.
Abad-Moyano R, Pina T, Pérez-Panadés J, Carbonell EA, Urbaneja A.Exp Appl Acarol. 2010 Apr;50(4):317-28. Epub 2009 Sep 26.
 
Effects of Euseius stipulatus on establishment and efficacy in spider mite suppression of Neoseiulus californicus and Phytoseiulus persimilis in clementine.
Abad-Moyano R, Urbaneja A, Hoffmann D, Schausberger P.Exp Appl Acarol. 2010 Apr;50(4):329-41. Epub 2009 Sep 24.
 
On the ultrastructure and functional morphology of the male chelicerae (gonopods) in Parasitina and Dermanyssina mites (Acari: Gamasida).
Di Palma A, Wegener A, Alberti G.Arthropod Struct Dev. 2009 Jul;38(4):329-38. Epub 2009 Feb 9.
 
Predation-related odours reduce oviposition in a herbivorous mite.
Choh Y, Uefune M, Takabayashi J.Exp Appl Acarol. 2010 Jan;50(1):1-8. Epub 2009 Jun 13.
 
Intraguild interactions between Euseius stipulatus and the candidate biocontrol agents of Tetranychus urticae in Spanish clementine orchards: Phytoseiulus persimilis and Neoseiulus californicus.
Abad-Moyano R, Urbaneja A, Schausberger P.Exp Appl Acarol. 2010 Jan;50(1):23-34. Epub 2009 Jun 11.
 
Comparing chemical and biological control strategies for twospotted spider mites (Acari: Tetranychidae) in commercial greenhouse production of bedding plants.
Opit GP, Perret J, Holt K, Nechols JR, Margolies DC, Williams KA.J Econ Entomol. 2009 Feb;102(1):336-46.
 
Effect of the entomopathogenic fungus Lecanicillium muscariumon the predatory mite Phytoseiulus persimilis as a non-target organism.
Donka A, Sermann H, Büttner C.Commun Agric Appl Biol Sci. 2008;73(3):395-403.
 
The influence of sublethal deposits of agricultural mineral oil on the functional and numerical responses of Phytoseiulus persimilis (Acari: Phytoseiidae) to its prey, Tetranychus urticae (Acari: Tetranychidae).
Xue Y, Meats A, Beattie GA, Spooner-Hart R, Herron GA.Exp Appl Acarol. 2009 Aug;48(4):291-302. Epub 2009 Jan 29.
 
Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators.
Walzer A, Moder K, Schausberger P.Bull Entomol Res. 2009 Oct;99(5):457-66. Epub 2009 Jan 21.
 
Behavioural response of Phytoseiulus persimilisin inert materials for technical application.
Wendorf D, Sermann H, Katz P, Lerche S, Büttner C.Commun Agric Appl Biol Sci. 2009;74(2):397-400.
 
Comparison of thread-cutting behavior in three specialist predatory mites to cope with complex webs of Tetranychus spider mites.
Shimoda T, Kishimoto H, Takabayashi J, Amano H, Dicke M.Exp Appl Acarol. 2009 Feb;47(2):111-20. Epub 2008 Oct 22.
 
Comparative life-history traits of three phytoseiid mites associated with Tetranychus urticae (Acari: Tetranychidae) colonies in clementine orchards in eastern Spain: implications for biological control.
Abad-Moyano R, Pina T, Ferragut F, Urbaneja A.Exp Appl Acarol. 2009 Feb;47(2):121-32. Epub 2008 Oct 17.
 
Pre-adult development of Phytoseiulus persimilis on diets of Tetranychus urticae and Tetranychus lintearius: implications for the biological control of Ulex europaeus.
Davies JT, Ireson JE, Allen GR.Exp Appl Acarol. 2009 Feb;47(2):133-45. Epub 2008 Oct 16.
 
Verified and potential pathogens of predatory mites (Acari: Phytoseiidae).
Schütte C, Dicke M.Exp Appl Acarol. 2008 Dec;46(1-4):307-28. Epub 2008 Sep 2. Review.
 
Natural enemies of mass-reared predatory mites (family Phytoseiidae) used for biological pest control.
Bjørnson S.Exp Appl Acarol. 2008 Dec;46(1-4):299-306. Epub 2008 Aug 26. Review.
 
Maternal manipulation of hatching asynchrony limits sibling cannibalism in the predatory mite Phytoseiulus persimilis.
Schausberger P, Hoffmann D.J Anim Ecol. 2008 Nov;77(6):1109-14. Epub 2008 Jun 24.
 
Evaluation of the predatory mite, Neoseiulus californicus, for spider mite control on greenhouse sweet pepper under hot arid field conditions.
Weintraub P, Palevsky E.Exp Appl Acarol. 2008 Jun;45(1-2):29-37. Epub 2008 Jun 27.
 
Evaluation of dry-adapted strains of the predatory mite Neoseiulus californicus for spider mite control on cucumber, strawberry and pepper.
Palevsky E, Walzer A, Gal S, Schausberger P.Exp Appl Acarol. 2008 Jun;45(1-2):15-27. Epub 2008 Jun 20.
 
Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles.
van Wijk M, De Bruijn PJ, Sabelis MW.J Chem Ecol. 2008 Jun;34(6):791-803. Epub 2008 Jun 3.
 
Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae).
Schütte C, Gols R, Kleespies RG, Poitevin O, Dicke M.J Invertebr Pathol. 2008 Jun;98(2):127-35. Epub 2008 Mar 15.
 
The spatial and temporal distribution of predatory and phytophagous mites in field-grown strawberry in the UK.
Fitzgerald J, Xu X, Pepper N, Easterbrook M, Solomon M.Exp Appl Acarol. 2008 Apr;44(4):293-306. Epub 2008 Apr 16.
 
Significance of terpenoids in induced indirect plant defence against herbivorous arthropods.
Mumm R, Posthumus MA, Dicke M.Plant Cell Environ. 2008 Apr;31(4):575-85. Epub 2008 Jan 17.
 
Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction.
de Boer JG, Hordijk CA, Posthumus MA, Dicke M.J Chem Ecol. 2008 Mar;34(3):281-90. Epub 2008 Jan 10.Free PMC Article
 
Effects of a mixture of vegetable and essential oils and fatty acid potassium salts on Tetranychus urticae and Phytoseiulus persimilis.
Tsolakis H, Ragusa S.Ecotoxicol Environ Saf. 2008 Jun;70(2):276-82. Epub 2007 Nov 26.
 
Toxicity of bifenazate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus citri and their relative toxicity to the predaceous mites, Phytoseiulus persimilis and Neoseiulus californicus.
Ochiai N, Mizuno M, Mimori N, Miyake T, Dekeyser M, Canlas LJ, Takeda M.Exp Appl Acarol. 2007;43(3):181-97. Epub 2007 Oct 31.
 
Interactions among phytophagous mites, and introduced and naturally occurring predatory mites, on strawberry in the UK.
Fitzgerald J, Pepper N, Easterbrook M, Pope T, Solomon M.Exp Appl Acarol. 2007;43(1):33-47. Epub 2007 Aug 23.
 
Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species.
van den Boom CE, van Beek TA, Dicke M.Bull Entomol Res. 2002 Dec;92(6):539-46.
 
Phytotoxicity of tolylfluanid in tomatoes.
Gielen S, Vogels L, Seels B, Aerts R.Commun Agric Appl Biol Sci. 2006;71(2 Pt A):79-82.
 
Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids?
Pinto DM, Blande JD, Nykänen R, Dong WX, Nerg AM, Holopainen JK.J Chem Ecol. 2007 Apr;33(4):683-94. Epub 2007 Feb 28.
 
Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis.
van Wijk M, Wadman WJ, Sabelis MW.Exp Appl Acarol. 2006;40(3-4):217-29. Epub 2007 Jan 24.
 
Gross morphology of the central nervous system of a phytoseiid mite.
van Wijk M, Wadman WJ, Sabelis MW.Exp Appl Acarol. 2006;40(3-4):205-16. Epub 2007 Jan 23.
 
Whole genome amplification of Chelex-extracted DNA from a single mite: a method for studying genetics of the predatory mite Phytoseiulus persimilis.
Konakandla B, Park Y, Margolies D.Exp Appl Acarol. 2006;40(3-4):241-7. Epub 2007 Jan 20.
 
Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.
Nachappa P, Margolies DC, Nechols JR, Loughin T.Exp Appl Acarol. 2006;40(3-4):231-9. Epub 2007 Jan 16.
 
 Efficacy and persistence of rosemary oil as an acaricide against twospotted spider mite (Acari: Tetranychidae) on greenhouse tomato.
Miresmailli S, Isman MB.J Econ Entomol. 2006 Dec;99(6):2015-23.
 
 Predator avoidance in phytophagous mites: response to present danger depends on alternative host quality.
Choh Y, Takabayashi J.Oecologia. 2007 Mar;151(2):262-7. Epub 2006 Nov 11.
 
 Evaluation of predatory mites and Acramite for control of twospotted spider mites in strawberries in north central Florida.
Rhodes EM, Liburd OE.J Econ Entomol. 2006 Aug;99(4):1291-8.
 
 Comparison of single and combination treatments of Phytoseiulus persimilis, Neoseiulus californicus, and Acramite (bifenazate) for control of twospotted spider mites in strawberries.
Rhodes EM, Liburd OE, Kelts C, Rondon SI, Francis RR.Exp Appl Acarol. 2006;39(3-4):213-25. Epub 2006 Jun 13.
 
 A novel disease affecting the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae): 2. Disease transmission by adult females.
Schütte C, Poitevin O, Negash T, Dicke M.Exp Appl Acarol. 2006;39(2):85-103. Epub 2006 May 24.
 
 The predatory mite Phytoseiulus persimilis adjusts patch-leaving to own and progeny prey needs.
Vanas V, Enigl M, Walzer A, Schausberger P.Exp Appl Acarol. 2006;39(1):1-11.
 
 A novel disease affecting the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae): 1. Symptoms in adult females.
Schütte C, Kleijn PW, Dicke M.Exp Appl Acarol. 2006;38(4):275-97.
 
 Testing for non-target effects of spinosad on twospotted spider mites and their predator Phytoseiulus persimilis under greenhouse conditions.
Holt KM, Opit GP, Nechols JR, Margolies DC.Exp Appl Acarol. 2006;38(2-3):141-9.
 
 The effects of prey patchiness, predator aggregation, and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae).
Nachman G.Exp Appl Acarol. 2006;38(2-3):87-111.
 
 Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis.
Cakmak I, Janssen A, Sabelis MW.Exp Appl Acarol. 2006;38(1):33-46.
 
 The effect of indoxacarb and five other insecticides on Phytoseiulus persimilis (Acari: Phytoseiidae), Amblyseius fallacis (Acari: Phytoseiidae) and nymphs of Orius insidiosus (Hemiptera: Anthocoridae).
Bostanian NJ, Akalach M.Pest Manag Sci. 2006 Apr;62(4):334-9.
 
 Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis.
Pukall R, Schumann P, Schütte C, Gols R, Dicke M.Int J Syst Evol Microbiol. 2006 Feb;56(Pt 2):465-9.Free Article
 .
 
Kappers IF, Aharoni A, van Herpen TW, Luckerhoff LL, Dicke M, Bouwmeester HJ.Science. 2005 Sep 23;309(5743):2070-2.
 Negative evidence of Wolbachia in the predaceous mite Phytoseiulus persimilis.
Enigl M, Zchori-Fein E, Schausberger P.Exp Appl Acarol. 2005;36(4):249-62.
 
 Amblyseius andersoni Chant (Acari: Phytoseiidae), a successful predatory mite on Rosa spp.
van der Linden A.Commun Agric Appl Biol Sci. 2004;69(3):157-63.
 
Kronqvist M, Johansson E, Kolmodin-Hedman B, Oman H, Svartengren M, van Hage-Hamsten M.Allergy. 2005 Apr;60(4):521-6.
 
de Boer JG, Posthumus MA, Dicke M.J Chem Ecol. 2004 Nov;30(11):2215-30.
 
Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization.
Walzer A, Paulus HF, Schausberger P.Bull Entomol Res. 2004 Dec;94(6):577-84.
 
Exposure of lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process?
Choh Y, Shimoda T, Ozawa R, Dicke M, Takabayashi J.J Chem Ecol. 2004 Jul;30(7):1305-17.
 
Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato.
Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC.Plant Physiol. 2004 Aug;135(4):2025-37. Epub 2004 Aug 13.Free PMC Article
 
The relationship between dietary specialism and availability of food and water on cannibalistic interactions among predatory mites in protected crops.
de Courcy Williams ME, Kravar-Garde L, Fenlon JS, Sunderland KD.Exp Appl Acarol. 2004;33(1-2):31-44.
 
Multiple displacement amplification in combination with high-fidelity PCR improves detection of bacteria from single females or eggs of Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae).
Jeyaprakash A, Hoy MA.J Invertebr Pathol. 2004 Jul;86(3):111-6.
 
State-dependent and odour-mediated anemotactic responses of the predatory mite Phytoseiulus persimilis in a wind tunnel.
Van Tilborg M, Sabelis MW, Roessingh P.Exp Appl Acarol. 2004;32(4):263-70.
 
Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae).
Choi WI, Lee SG, Park HM, Ahn YJ.J Econ Entomol. 2004 Apr;97(2):553-8.
 
Control of the two-spotted spider mite (Tetranychus urticae Koch) in glasshouse roses.
Blindeman L, Van Labeke MC.Commun Agric Appl Biol Sci. 2003;68(4 Pt A):249-54.
 
Phytoseiid mites in protected crops: the effect of humidity and food availability on egg hatch and adult life span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae).
De Courcy Williams ME, Kravar-Garde L, Fenlon JS, Sunderland KD.Exp Appl Acarol. 2004;32(1-2):1-13.
 
Differential timing of spider mite-induced direct and indirect defenses in tomato plants.
Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC.Plant Physiol. 2004 May;135(1):483-95. Epub 2004 Apr 30.Free PMC Article
 
 The role of methyl salicylate in prey searching behavior of the predatory mite phytoseiulus persimilis.
De Boer JG, Dicke M.J Chem Ecol. 2004 Feb;30(2):255-71.
 
Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation.
Gols R, Roosjen M, Dijkman H, Dicke M.J Chem Ecol. 2003 Dec;29(12):2651-66.
 
Side-effects of three pesticides on the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae).
Kavousi A, Talebi K.Exp Appl Acarol. 2003;31(1-2):51-8.
 
The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae).
Skirvin DJ, Fenlon JS.Exp Appl Acarol. 2003;31(1-2):37-49.
 
State-dependent and odor-mediated anemotactic responses of a micro-arthropod on a novel type of locomotion compensator.
van Tilborg M, van der Pers JN, Roessingh P, Sabelis MW.Behav Res Methods Instrum Comput. 2003 Aug;35(3):478-82.
 
Interactions in a tritrophic acarine predator-prey metapopulation system V: within-plant dynamics of Phytoseiulus persimilis and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae).
Nachman G, Zemek R.Exp Appl Acarol. 2003;29(1-2):35-68.
 
Skirvin DJ, Stavrinides MC, Skirvin DJ.Bull Entomol Res. 2003 Aug;93(4):343-50.
 
IgE-mediated sensitization to predatory mites in Swedish greenhouse workers.
Johansson E, Kolmodin-Hedman B, Källström E, Kaiser L, van Hage-Hamsten M.Allergy. 2003 Apr;58(4):337-41.
 
Prey preference, intraguild predation and population dynamics of an arthropod food web on plants.
Venzon M, Janssen A, Sabelis MW.Exp Appl Acarol. 2001;25(10-11):785-808.
 
Genetic variation in foraging traits among inbred lines of a predatory mite.
Jia F, Margolies DC, Boyer JE, Charlton RE.Heredity (Edinb). 2002 Nov;89(5):371-9.Free Article
 
Population dynamics of interacting predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, held on detached bean leaves.
Walzer A, Blümel S, Schausberger P.Exp Appl Acarol. 2001;25(9):731-43.
 
Fine structure of the female genital system in phytoseiid mites with remarks on egg nutrimentary development, sperm-access system, sperm transfer, and capacitation (Acari, Gamasida, Phytoseiidae).
Di Palma A, Alberti G.Exp Appl Acarol. 2001;25(7):525-91.
 
Fine structure of the female genital system in phytoseiid mites with remarks on egg nutrimentary development, sperm-access system, sperm transfer, and capacitation (Acari, Gamasida, Phytoseiidae).
Di Palma A, Alberti G.Exp Appl Acarol. 2001;25(7):525-91.
 
Exogenous ACC enhances volatiles production mediated by jasmonic acid in lima bean leaves.
Horiuchi J, Arimura G, Ozawa R, Shimoda T, Takabayashi J, Nishioka T.FEBS Lett. 2001 Dec 7;509(2):332-6.
 
Jerking in predaceous mites (Acari: Phytoseiidae) with emphasis on larvae.
Blackwood JS, Croft BA, Schausberger P.Exp Appl Acarol. 2001;25(6):475-92.
 
Integrated pest management of two-spotted mite Tetranychus urticae on greenhouse roses using petroleum spray oil and the predatory mite Phytoseiulus persimilis.
Nicetic, Watson DM, Beattie GA, Meats A, Zheng J.Exp Appl Acarol. 2001;25(1):37-53.
 
Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis.
Krips OE, Willems PE, Gols R, Posthumus MA, Gort G, Dicke M.J Chem Ecol. 2001 Jul;27(7):1355-72.
 
Habitat structure and population persistence in an experimental community.
Ellner SP, McCauley E, Kendall BE, Briggs CJ, Hosseini PR, Wood SN, Janssen A, Sabelis MW, Turchin P, Nisbet RM, Murdoch WW.Nature. 2001 Aug 2;412(6846):538-43.
 
How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey.
Drukker B, Bruin J, Jacobs G, Kroon A, Sabelis MW.Exp Appl Acarol. 2000;24(12):881-95.
 
Disease prevalence and transmission of Microsporidium phytoseiuli infecting the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae).
Bjørnson S, Keddie BA.J Invertebr Pathol. 2001 Feb;77(2):114-9.
 
Toxicity of the herbicide glufosinate-ammonium to predatory insects and mites of Tetranychus urticae (Acari: Tetranychidae) under laboratory conditions.
Ahn YJ, Kim YJ, Yoo JK.J Econ Entomol. 2001 Feb;94(1):157-61.
 
Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control.
Skirvin DJ, Fenlon JS.Bull Entomol Res. 2001 Feb;91(1):61-7.
Cannibalism and intraguild predation among phytoseiid mites: are aggressiveness and prey preference related to diet specialization?
Schausberger P, Croft BA.Exp Appl Acarol. 2000;24(9):709-25.
 
Process of egg formation in the female body cavity and fertilization in male eggs of Phytoseiulus persimilis (Acari: Phytoseiidae).
Toyoshima S, Nakamura M, Nagahama Y, Amano H.Exp Appl Acarol. 2000;24(5-6):441-51.
 
Do herbivore-induced plant volatiles influence predator migration and local dynamics of herbivorous and predatory mites?
Pels B, Sabelis MW.Exp Appl Acarol. 2000;24(5-6):427-40.
 
nduced response of tomato plants to injury by green and red strains of Tetranychus urticae.
Takabayashi J, Shimoda T, Dicke M, Ashihara W, Takafuji A.Exp Appl Acarol. 2000;24(5-6):377-83.
 
Development and pathology of two undescribed species of microsporidia infecting the predatory mite, Phytoseiulus persimilis Athias-Henriot.
Bjøornson S, Keddie BA.J Invertebr Pathol. 2000 Nov;76(4):293-300.
 
Herbivory-induced volatiles elicit defence genes in lima bean leaves.
Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J.Nature. 2000 Aug 3;406(6795):512-5.
 
Photographic sampling: a photographic sampling method for mites on plants.
Sircom J.Exp Appl Acarol. 2000 Jan;24(1):55-61.
Sequence variation of ribosomal internal transcribed spacers (ITS) in commercially important Phytoseiidae mites.
Navajas M, Lagnel J, Fauvel G, de Moraes G.Exp Appl Acarol. 1999 Nov;23(11):851-9.
 
Differential effects of plant species on a mite pest (Tetranychus utricae) and its predator (Phytoseiulus persimilis): implications for biological control.
Skirvin DJ, de Courcy Williams M.Exp Appl Acarol. 1999 Jun;23(6):497-512.
 
Birefringent Crystals and Abdominal Discoloration in the Predatory Mite Phytoseiulus persimilis (Acari: Phytoseiidae)
Bjørnson S, Steiner MY, Keddie BA.J Invertebr Pathol. 1997 Mar;69(2):85-91.
 
Ultrastructure and Pathology of Microsporidium phytoseiuli n. sp. Infecting the Predatory Mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae)
Bjørnson S, Steiner MY, Keddie BA.J Invertebr Pathol. 1996 Nov;68(3):223-30.
 
Phylogeny of ticks (Ixodida) inferred from nuclear ribosomal DNA.
Crampton A, McKay I, Barker SC.Int J Parasitol. 1996 May;26(5):511-7.Pesticides and phytoseiid mites: strategies for risk assessment.
Bakker FM, Jacas JA.Ecotoxicol Environ Saf. 1995 Oct;32(1):58-67.
 
Antigenic relationship between the house dust mite Dermatophagoides farinae and the predacious mite Phytoseiulus persimilis.
Homma R, Ando T, Miyahara A, Kimura H, Ito G, Uesato N, Ino Y, Iwaki M.Arerugi. 1994 Dec;43(11):1351-4.
 
Phenomenon of Rickettsiella phytoseiuli in Phytoseiulus persimilis mite.
Sutáková G.Acta Microbiol Immunol Hung. 1994;41(4):411-4.
 
 
Sutáková G, Rehácek J.Acta Virol. 1988 Jan;32(1):86-9.
 
Electron microscopic study of developmental stages of Rickettsiella phytoseiuli in Phytoseiulus persimilis Athias-Henriot (Gamasoidea:Phytoseiidae) mites.
Sutáková G.Acta Virol. 1988 Jan;32(1):50-4.
 
Encounters in predator-prey systems: a simple discrete model.
Voit EO.Biosystems. 1984;17(1):57-63.
 
Rickettsiella phytoseiuli and virus-like particles in Phytosfiulus persimilis (Gamasoidea: Phytoseiidae) mites.
Sutáková G, Rüttgen F.Acta Virol. 1978 Jul;22(4):333-6.
 
The feeding behaviour of Phytoseiulus persimilis (Acarina: Phytoseiidae), particularly as affected by certain pesticides.
Jackson GJ, Ford JB.Ann Appl Biol. 1973 Oct;75(2):165-71. No abstract available.
 
Life history and life table of Phytoseiulus persimilis Athias-Henriot.
Laing JE.Acarologia. 1968 Dec;10(4):578-88. No abstract available.
 
Mori H, Chant DA.Can J Zool. 1966 Sep;44(5):863-71. No abstract available.

 

volver arriba